Squares, primes, and proofs

In studying whole numbers, mathematicians have discovered a variety of surprising patterns.

One of the most important results of elementary number theory is the so-called law of quadratic reciprocity, which links prime numbers (those evenly divisible only by themselves and one) and perfect squares (whole numbers multiplied by themselves).

For a positive integer, d, the law describes the primes, p, for which there exists a number x such that dividing the square of x by p gives the same remainder as dividing d by p.